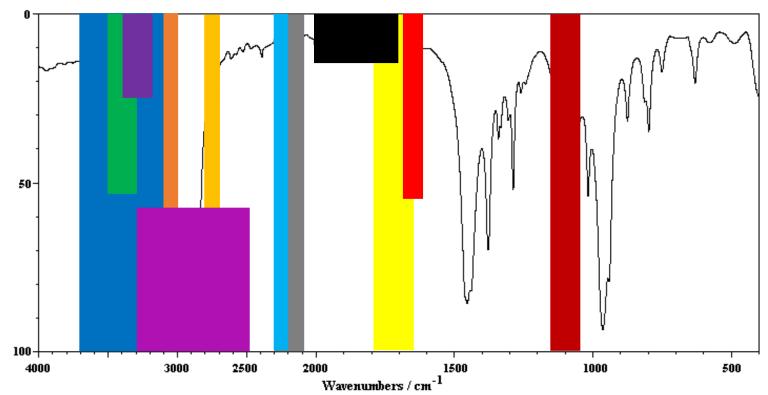
Spectroscopy Reference Sheet

Unsaturated Number $UN = \frac{(2C+2) - (H+N) - X}{2}$ C = Carbon H = Hydrogen N = Nitrogen Y = Halidas N = Nitrogen X = Halides

Common Unsaturated Numbers:

- UN = 0 NO π Bonds Present
- UN = 1 Double Bond OR Ring
- UN = 4 Benzene Ring (3 Double Bond + Ring)
 - Check ¹H NMR or IR for confirmation.
- UN = 5 Benzene Ring + Double Bond
 - Must confirm with ¹H NMR or IR

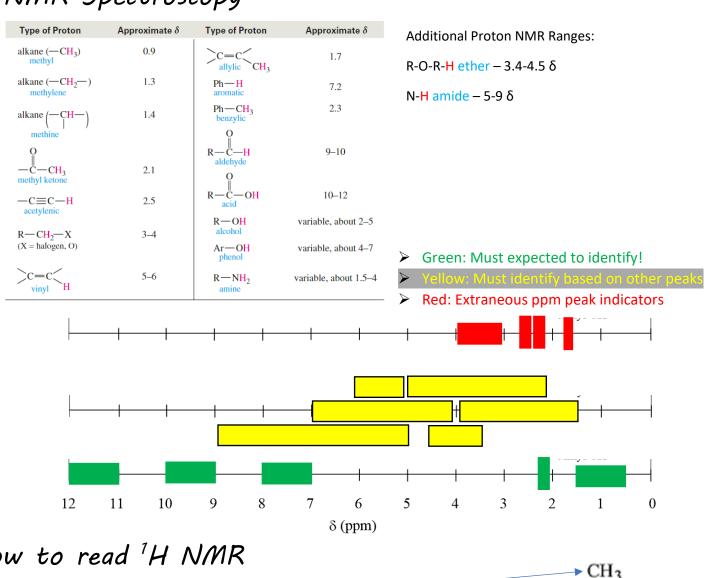

Uncommon Unsaturated Numbers:

ALL UN numbers below must confirm through IR and NMR Spectroscopy

- UN = 2 Triple Bond, 2 Double Bonds, 2 Rings
 - o Potential Combination: Double Bond & Ring
- UN = 3 Combination: Triple bond, Rings, Double bonds
- UN = 6 Benzene Ring + Combination
 - o Potential Combination: See UN = 2

IR Spectroscopy

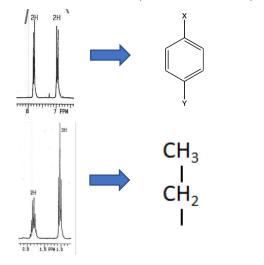
Absorbance / %

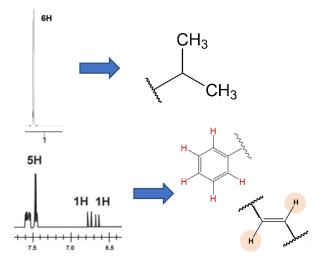


- Dark Red Ether Group (1050-1150 cm⁻¹)
- Light Red Double Bond (1620-1680 cm⁻¹)
- Dark Orange Terminal Alkene (3000-3100 cm⁻¹)
- Light Orange Aldehyde Group (2700-2800 cm⁻¹, 2 Peaks)
- Green Amine Group (3300-3500 cm⁻¹)
 - 1° Amine 2 Peaks
 - 2° Amine 1 Peaks
 - o 3° Amine 0 Peaks
- Light Blue Nitrile Group (2200-2300 cm⁻¹)
- Dark Blue Alcohol Group (3100-3700 cm⁻¹, broad)
- Light Violet Carboxylic Alcohol Group (2500-3300 cm⁻¹, broad)
- Dark Violet Terminal Alkyne (3200-3400 cm⁻¹)
- Gray Triple Bond (2100-2200 cm⁻¹)
- Black Benzene Ring Outdated (Multiple Peaks, 1700-2000 cm⁻¹)

Possible IR Combinations:

- Carbonyl + Alcohol = Carboxylic Acid
- Carbonyl + Amine = Amide
- Carbonyl + Ether = Ester


¹H NMR Spectroscopy



How to read ¹H NMR

3H **⋖** Number of Hydrogen bonded to a reference carbon CH -Number of hydrogens bonded to an adjacent carbon bonded to the reference carbon ➤ Remember: (N+1) Rule! Find N for Hydrogen.

Common ¹H NMR Peaks CAUTION: 6H,5H, and double bonds can have varied peaks (watch your ppm!!)

Identifying Compound ASK YOURSELF:

- Does a certain bond cause a downfield or upfield?
- Did you identify all atoms given?
- Is there peaks where I can combine what the peaks mean?
- Is there any bonds symmetrical for this compound?