A. Nomenclature: (12 Points)

Give an acceptable IUPAC name for each of the following compounds in 1 and 2. Draw the structure of the compound in 3 . Be sure to note stereochemistry where appropriate.
1.

2.

3.

2-nitro-6-phenylanisole

B. Facts: (18 Points)

1. Label the molecules below as aromatic(AR), antiaromatic(AA), or nonaromatic(NA). Please assume all are planar. (8 pts.)

\square

\square

\square

\square
2. Rank the following substituted benzene compounds in order of increasing rate of reaction with a mixture of Br_{2} and FeBr_{3} ($1=$ slowest rate, $3=$ fastest rate) (3 pts.)

\square

\square
3. Explain why compound \mathbf{A} is more basic than compound \mathbf{B}. Your answer must includes structures to support the following.

A

B
4. Place the following compounds in order of increasing frequency of the $\mathrm{C}=\mathrm{O}$ stretch (1=lowest frequency, 3=high frequency) (3 pts.)

\square
\square

\square
C. Reactions: Total $=36$ points, 6 points each

Please provide the reagents or the major products in the answer box. Indicate stereochemistry if applicable. Full credit is awarded only when the product of each step in a multi-step reaction is shown below the reaction

3. $\left(\square \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi}$
4.

5.

1. O_{3}
$\xrightarrow[\text { 2. }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}]{\mathrm{Zn}(\mathrm{Hg}) / \mathrm{HCl} \text { (2 eq.) }} \longrightarrow$
2. $\mathrm{Br}_{2} / \operatorname{Light}(2 \mathrm{eq})$
3. $\mathrm{NaCN} /$ acetone (2 eq)
4. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}(2 \mathrm{eq})$, then $\mathrm{H}_{3} \mathrm{O}^{+}$
5.

$\xrightarrow{\text { 1. } \mathrm{HCl} / \mathrm{CO} / \mathrm{AlCl}_{3} / \mathrm{CuCl}} \xrightarrow{\text { 2. } \mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O} / \text { acetone } / 0^{\circ} \mathrm{C}\left(\text { (Jones }{ }^{\top}\right)}$
3. $\triangle \mathrm{CH}_{2} \mathrm{Li}$ (2eq), then $\mathrm{H}_{3} \mathrm{O}^{+}$

D. Mechanism: (12 points)

Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow." Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

E. Synthesis: 12 Points

Synthesize the molecule below using benzene, methanol, any inorganic reagents, and any oxidizing or reducing agents.

F. Spectroscopy: 10 Points

A compound with the formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ exhibits the IR, ${ }^{1} \mathrm{H}$ NMR, and proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra shown below. Please identify this compound and draw the structure in the box provided below

\square

