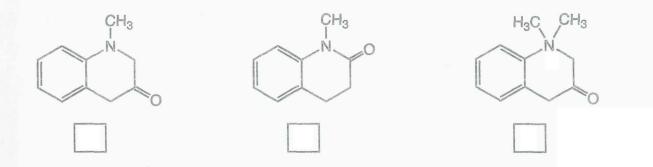
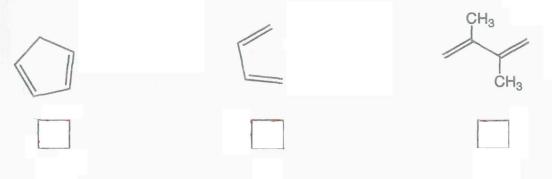

A. Nomenclature: (12 points)
Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.

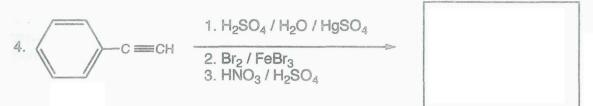
	\	\
)	
1.		
	/	

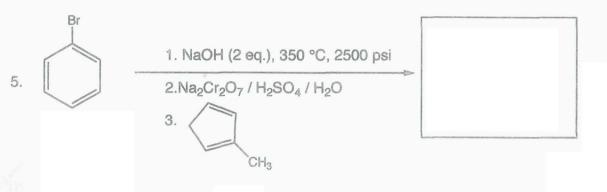



2. Rank the following alcohols in order of increasing rate of dehydration. (1=slowest rate, 3=fastest rate) (3 pts.)

3. Rank the following substituted benzene compounds in order of increasing reactivity in an electrophilic aromatic substitution reaction with Br₂ / FeBr₃. (1=least reactive, 3=most reactive) (3 pts.)

4. Rank the following compounds in order of increasing reactivity in a Diels-Alder reaction. (1=least reactive, 3=most reactive) (3 pts.)




C. Reactions: Total = 35 points, 7 points each

Please provide the major product in the answer box. Indicate **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.



D. Mechanism: (12 points)
Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges.
When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

E. Synthesis: 12 Points
Synthesize the molecule below using any of the following reagents: benzene, alcohols of two carbons or less, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids. You may ignore stereochemistry.

F. Spectroscopy: 12 Points

A compound with the formula $C_{11}H_{14}O_2$ exhibits the IR, ¹H NMR and proton decoupled ¹³C NMR spectra shown below. Please identify this compound and draw the structure in the box provided below.

Sp 2010 Exam 1

TABLE 13.3 Approximate proton chemical shifts

TYPE OF PROTON	CHEMICAL SHIFT (δ, ppm)		
1° Alkyl, RCH ₃	0.8-1.0		
2° Alkyl, RCH₂R	1.2-1.4		
3° Alkyl, R ₃ CH	1.4-1.7		
Allylic, $R_2C = C - CH_3$	1.6-1.9		
Ketone, RCCH ₃	2.1-2.6		
Benzylic, ArCH ₃	2.2-2.5		
Acetylenic, RC≡CH	2.5-3.1		
Alkyl iodide, RCH 2I	3.1-3.3		
Ether, ROCH ₂ R	3.3-3.9		
Alcohol, HOCH ₂ R	3.3-4.0		
Alkyl bromide, RCH ₂ Br	3.4-3.6		
Alkyl chloride, RCH ₂ Cl	3.6-3.8		
Vinylic, R ₂ C=CH ₂	4.6-5.0		
Vinylic, R ₂ C=CH	5.2-5.7		
Ŕ			
Aromatic, ArH	6.0-9.5		
Aldehyde, RCH	9.5-9.6		
Alcohol hydroxyl, ROH	0.5-6.0		
Amino, R-NH ₂	1.0~5.0°		
Phenolic, ArOH	4.5-7.7		
Carboxylic, RCOH	10-134		

⁶ The chemical shifts of these protons vary in different solvents and with temperature and concentration.

TABLE 13.4 Approximate carbon-13 chemical shifts

TYPE OF CARBON ATOM	CHEMICAL SHIFT (δ, ppm) 0-40		
1° Alkyl, RCH ₃			
2° Alkyl, RCH ₂ R	10-50		
3° Alkyl, RCHR ₂	15-50		
Alkyl halide or amine, $-C - X \left(X = Cl, Br, or N - \right)$	10-65		
Alcohol or ether, —C—O	50-90		
Alkyne, —C≡	60-90		
Alkene, C=	100-170		
Aryl, C—	100-170		
Nitriles, —C≡N	120-130		
Amides, — C — N —	150-180		
Carboxylic acids, esters, $-C-O$	160-185		
O Aldehydes, ketones, — C —	182-215		

TABLE 13.2 Characteristic infrared absorptions of groups

GROUP		EQUENCY NGE (cm ⁻¹)	INTENSITY
A. Alkyl			
C—H (stretching)		2853-2962	(m-s)
Isopropyl, —CH(CH ₃) ₂	and	1380 – 1385 1365 – 1370	(s) (s)
tert-Butyl, —C(CH ₃) ₃	and	1385-1395 ~ 1365	(m) (s)
B. Alkenyl			
C—H (stretching)		3010-3095	(m)
C=C (stretching)		1620-1680	(v)
R-CH=CH ₂	and	985 – 1000 905 – 920	(s)
R ₂ C=CH ₂ (out-of-plane		880-900	(s)
cis-RCH=CHR C—H bendings)		675-730	(s)
trans-RCH=CHR		960-975	(s)
C. Alkynyl			
≡C−H (stretching)		~ 3300	(s)
C≡C (stretching)		2100-2260	(v)
D. Aromatic			
Ar—H (stretching)		~ 3030	(v)
Aromatic substitution type (C—H out-of-plane bendings) Monosubstituted o Disubstituted m Disubstituted p Disubstituted	and	690-710 730-770 735-770 680-725 750-810 800-840	(very s) (very s) (s) (s) (very s) (very s)
E. Alcohols, Phenols, and Carboxylic Acids			
O—H (stretching)			
Alcohols, phenols (dilute solutions)		3590-3650	(sharp, v
Alcohols, phenols (hydrogen bonded)		3200-3550	(broad, s
Carboxylic acids (hydrogen bonded)		2500-3000	(broad, v
F. Aldehydes, Ketones, Esters, and Carboxylic Acids			
C=O (stretching)		1630-1780	(s)
Aldehydes		1690-1740	(s)
Ketones		1680-1750	(s)
Esters		1735 – 1750	(s)
Carboxylic acids Amides		1710-1780 1630-1690	(s) (s)
G. Amines			
N-H		3300-3500	(m)
H. Nitriles			
C≡N		2220-2260	(m)

^{*} Abbreviations: s = strong, m = medium, w = weak, v = variable, $\sim = approximately$