Second Exam	Name (PRINT)_	
		Last, First
Chemistry 3332	Signature	
March 16, 2007	ID#	

Please circle class time.

Dr. Bean's 10:00 AM

Dr. Bean's 1:00 PM

Page #	Score
1. 12 pts.	
2. 14 pts.	
3. 18 pts.	
4. 18 pts.	
5. 13 pts.	
6. 13 pts.	
7. 12 pts.	

TOTAL_____

Note: Present your student ID when you return the exam booklet

A. Nomenclature: (12 points) Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.

B. Facts: (14 points total)

1. Label the molecules below as aromatic (**AR**), antiaromatic (**AA**), or nonaromatic (**NA**). You may assume all are planar. (8 pts.)

2. Place the compounds in increasing order of λ_{max} (wavelength) for the π to π^* transition in the UV spectrum. (1=shortest wavelength, 3=longest wavelength) (3 pts.)

3. Consider the reaction of the compounds below with water. Place them in order of increasing amount of hydrate present at equilibrium. (1=least hydrate at EQ, 3=most hydrate at EQ) (3 pts.)

C. Reactions: Total = 36 points, 6 points each

Please provide the reagents or the major product in the answer box. Indicate **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.

6.

D. Mechanisms: (13 points)

Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". <u>Remember to show only one step at a time.</u> Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

E. Synthesis: 13 Points

Synthesize the molecule below using any of the following reagents: benzene, any **stable, one carbon** molecule, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

F. Spectroscopy: 12 Points

A compound with the formula $C_6H_{12}O$ exhibits the IR, ¹H NMR and proton decoupled ¹³C NMR spectra shown below. Please identify this compound and draw the structure in the box provided below. (Note: The peak at 2.02 – 2.24 ppm represents two overlapped signals.)

