Second Exam

Chemistry 3332

March 16, 2007
Name (PRINT) \qquad Last, First

Signature

ID\# \qquad

Please circle class time.

Dr. Bean's 10:00 AM

Dr. Bean's 1:00 PM

Page \#	Score
1. 12 pts.	
2. 14 pts.	
3. 18 pts.	
4. 18 pts .	
5. 13 pts.	
6. 13 pts .	
7. 12 pts .	

TOTAL \qquad

Note: Present your student ID when you return the exam booklet
A. Nomenclature: (12 points)

Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.
1.

2.

3.

B. Facts: (14 points total)

1. Label the molecules below as aromatic (AR), antiaromatic (AA), or nonaromatic (NA). You may assume all are planar. (8 pts.)

\square

2. Place the compounds in increasing order of $\lambda_{\max }$ (wavelength) for the π to π^{*} transition in the UV spectrum. (1=shortest wavelength, 3=longest wavelength) (3 pts.)

\square
\square
3. Consider the reaction of the compounds below with water. Place them in order of increasing amount of hydrate present at equilibrium. (1=least hydrate at EQ, 3=most hydrate at EQ) (3 pts.)

\square
\square
C. Reactions: Total $=36$ points, 6 points each

Please provide the reagents or the major product in the answer box. Indicate stereochemistry if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.
1.

2.

1. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4} /$ heat

2.

4.

$\xrightarrow[\substack{\text { 3. } \mathrm{Na} / \mathrm{NH}_{3} / \mathrm{EtOH} \\ \text { 1. } \mathrm{NaOH} \text { (2 eq.) } / \text { heat } \\ \text { 2. } \mathrm{CH}_{3} \mathrm{Br}}]{\square}$
5.

$\xrightarrow[\text { 3. } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} \text {, then } \mathrm{H}_{3} \mathrm{O}^{+}]{\substack{\text { 1. } \mathrm{NBS} / \text { light } \\ \text { 2. } \mathrm{Mg} / \text { ether }}}$

6.

D. Mechanisms: (13 points)

Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

E. Synthesis: 13 Points

Synthesize the molecule below using any of the following reagents: benzene, any stable, one carbon molecule, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

F. Spectroscopy: 12 Points

A compound with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ exhibits the IR, ${ }^{1} \mathrm{H}$ NMR and proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra shown below. Please identify this compound and draw the structure in the box provided below. (Note: The peak at $2.02-2.24 \mathrm{ppm}$ represents two overlapped signals.)

