| Second Exam    | Name (PRINT) |           |  |
|----------------|--------------|-----------|--|
|                | Las          | st, First |  |
| Chemistry 3332 | Signature    |           |  |
| March 24, 2006 | ID#          |           |  |

# Please circle class time.

Dr. Bean's 10:00 AM

Dr. Bean's 1:00 PM

| Page #     | Score |  |
|------------|-------|--|
| 1. 12 pts. |       |  |
| 2. 15 pts. |       |  |
| 3. 18 pts. |       |  |
| 4. 18 pts. |       |  |
| 5. 13 pts. |       |  |
| 6. 12 pts. |       |  |
| 7. 12 pts. |       |  |

TOTAL\_\_\_\_\_

Note: Present your student ID when you return the exam booklet

**A. Nomenclature:** (12 points) Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.



ÇH<sub>2</sub>



3.



1. Place the compounds in increasing order of  $\lambda_{max}$  (wavelength) for the  $\pi$  to  $\pi^*$  transition observed in the UV spectrum. (shortest wavelength = 1, longest wavelength = 3) (3 pts.)



2. Place the compounds in order of increasing reaction rate with bromine in an electrophilic aromatic substitution reaction. (1 = slowest rate, 3 = fastest rate) (3 pts.)



3. Place the compounds in order of increasing reactivity in a nucleophilic addition reaction. (1 = least reactive, 3 = most reactive) (3 pts.)



4. Label the compounds as aromatic (AR), antiaromatic (AA), or nonaromatic (NA). (You may assume all are planar.) (6 pts.)



### **C. Reactions**: Total = 36 points, 6 points each

Please provide the major product or the reagents in the answer box. Be sure your drawing indicates **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.

1.

$$\begin{array}{c|c}
\hline
 & O \\
\hline
 & C - CI \\
\hline
 & 2. \text{ Fuming } H_2SO_4
\end{array}$$

2.

3.

CI 
$$\frac{1. (CH_3CH_2CH_2)_2CuLi}{2.}$$

$$-CH_2NH_2 / H^+$$





- 1. Br<sub>2</sub> / light
- 2. Mg / ether
  3. CH<sub>3</sub>CH<sub>2</sub>CN, then H<sub>3</sub>O<sup>+</sup>





1. O<sub>3</sub>

2. (CH<sub>3</sub>)<sub>2</sub>S

3. NaCN / H<sup>+</sup> or HCN / CN<sup>-</sup>





### **D. Mechanisms**: (13 points)

Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

### E. Synthesis: 12 Points

Synthesize the molecule below using any of the following reagents: benzene, any **stable**, **one carbon** molecule, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

$$CH_2$$
- $O$ - $NO_2$ 

## F. Spectroscopy: 12 Points

A compound with the formula  $C_9H_{18}O$  exhibits the IR,  $^1H$  NMR and proton decoupled  $^{13}C$  NMR spectra shown below. Please identify this compound and draw the structure in the box provided below.

