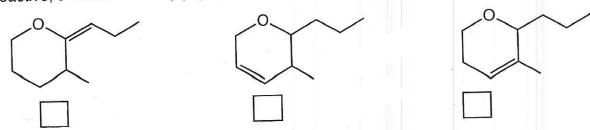
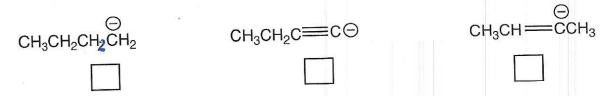

Exam 3, F2021

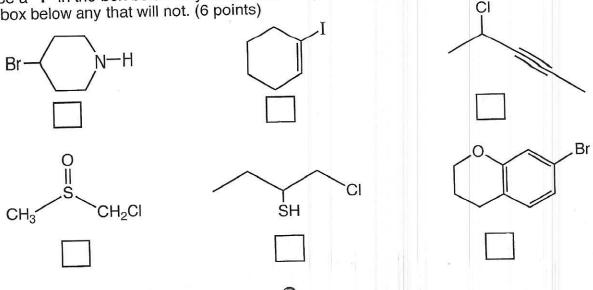
A. Nomenclature: (16 points)
Give an acceptable IUPAC name for each of the following compounds. Be sure to include the stereochemistry when indicated and appropriate.




## B. FACTS: Total = 24 points

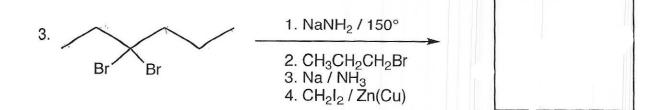

1. Label the cyclic compounds as stable (S) or unstable (U). (6 points)

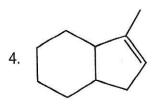



2. Place the carbon-carbon double bonds in order of increasing reactivity in  $H_3O^+$ . (1=least reactive, 3=most reactive) (6 points)



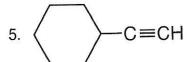
3. Place the carbanions in order of increasing basicity. (1=least basic, 3=most basic) (6 points)



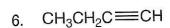


4. Place a "Y" in the box below any halide that will produce a useful Grignard reagent. Place an "N" in the box below any that will not. (6 points)



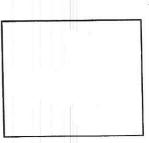
| C. | Reactions: | Total = | 36 points, | 6 | points | eacl |
|----|------------|---------|------------|---|--------|------|


Please provide the major product in the answer box. Indicate stereochemistry if applicable. Full credit is awarded only when the product of each step in a multi-step reaction is shown below the reaction.






- 1. BH<sub>3</sub>•THF

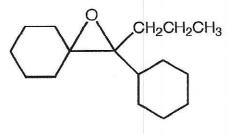

- 2. H<sub>2</sub>O<sub>2</sub> / OH<sup>-</sup> 3. pTsCl / pyridine 4. CH<sub>3</sub>S<sup>-</sup>Na<sup>+</sup> / acetone



- 1. HgSO<sub>4</sub> / H<sub>2</sub>SO<sub>4</sub> / H<sub>2</sub>O
- 2. CH<sub>3</sub>C≡C: Na<sup>+</sup>, then H<sub>3</sub>O<sup>+</sup>
- 3. H<sub>2</sub> / Pd(BaSO<sub>4</sub>) / quinoline 4. Hg(OAc)<sub>2</sub> / CH<sub>3</sub>OH 5. NaBH<sub>4</sub>



- 1. HBr (1 equivalent)
- 2. Mg / ether
- O, then H<sub>3</sub>O<sup>+</sup>




D. Mechanisms: (12 points)

The reaction below produces a mixture of products. Provide a clear mechanism to explain the formation of the products shown. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. Do not show transition states.

E. Synthesis: (12 points)

Synthesize the molecule below from cyclohexane, alcohols of four carbons or less, any oxidizing or reducing agents, and any other inorganic reagents. (Please do not include mechanisms.)

