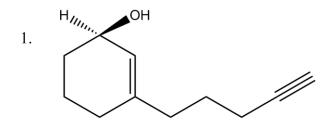
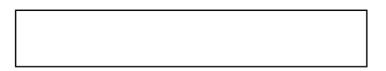
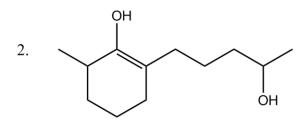
Third Exam	Name (PRINT)Last, First
Chemistry 3331	Signature
November 25, 2011	ID#

PLEASE CIRCLE CLASS TIME

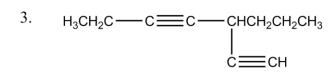
10:00 AM

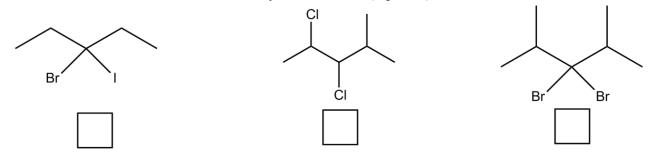

1:00 PM

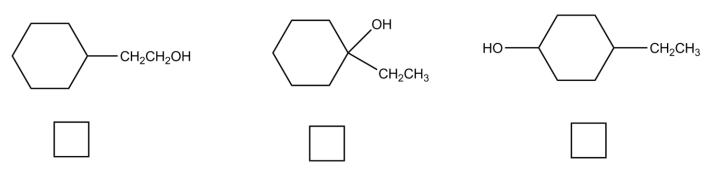

Page #	Score	
1. 16 pt		
2. 24 pt		
3. 18 pt		
4. 18 pt		
5. 12 pt		
6. 12 pt		
7. 9 pt		


Total: _____

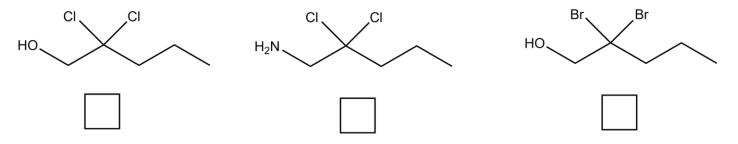

NOTE: Present your ID when you return the exam booklet

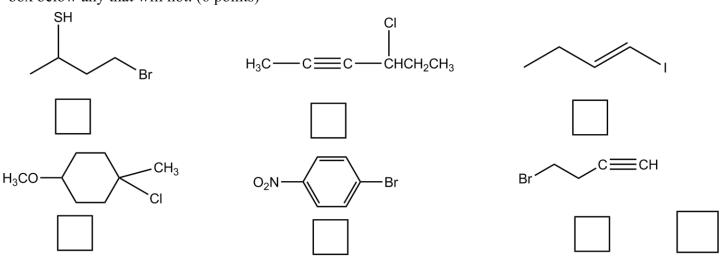

A. Nomenclature: (16 points) Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.


4.

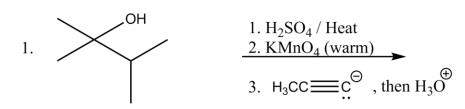


B. FACTS: Total = 24 points


1. Place a "Y" in the box below any compound that will produce a terminal alkyne when treated with NaNH₂ at 150 C. Place an "N" in the box below any that will not. (6 points)

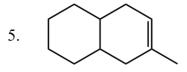

2. Place the alcohols in order of increasing reactivity in an acid catalyzed dehydration. (1=least reactive, 3=most reactive) (6 points)

3. Place the compounds in order of increasing acidity. (1=weakest acid, 3=strongest acid) (6 points)



4. Place a "Y" in the box below any halide that will produce a useful Grignard reagent. Place an "N" in the box below any that will not. (6 points)

C. Reactions: Total= 36 points, 6 points each


Please provide the major product in the answer box. Be sure your drawing indicates stereochemistry if applicable. Partial credit is awarded only when intermediate products in multi-step reaction are shown below the reaction.

2.
$$\bigcirc$$
 CH₂C \equiv C \bigcirc 1. Na / NH₃ \bigcirc 2. MCPBA

- 2. H₃O[⊕] 3. PCC/ CH₂Cl₂

$$1. \operatorname{OsO_4}/\operatorname{H_2O_2}/\operatorname{OH}$$

$$2.Na_{2}Cr_{2}O_{7}\,/\,H_{2}SO_{4}\,/\,H_{2}O$$

6.
$$H_3CH_2CC \longrightarrow CH_2$$
 CH_3

2. Mg /
$$Et_2O$$

D. Mechanisms: (12 points)

The reaction below produces a mixture of products. Provide a clear mechanism to explain the formation of each product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediate and all formal charges. Do not shwo transition states.

$$H_3O^{\oplus}$$
 OH

E. Synthesis: (12 points)

Synthesize the molecule below from cyclohexane, any alkenes, or alcohols of **three** cabons or less, and any inorganic reagents. (Please do not include mechanisms)

$$\begin{array}{c} \mathsf{CH_2CH_3} \\ \\ \mathsf{HO} \longrightarrow \mathsf{C} \longrightarrow \mathsf{CH_2CH_3} \\ \\ \\ \mathsf{H_3CH_2CC} \longrightarrow \mathsf{CH_2} \end{array}$$