Third Exam	Name (PRINT)_		
	,	Last, First	
Chemistry 3331	Signature		
November 16, 2007	ID#		

Please circle class time.

10:00 AM

1:00 PM

4:00 PM

Page #	Score
1. 16 pts.	
2. 24 pts.	
3. 18 pts.	
4. 18 pts.	
5. 12 pts.	
6. 12 pts.	

TOTAL_____

Note: Present your student ID when you return the exam booklet

A. Nomenclature: (16 points)
Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the **stereochemistry** where appropriate.

1.

3.

1. Place the following compounds in order of increasing acidity. (1 = least acidic, 3 = most acidic) (6 pts.)

2. Place an "X" in the box below any dihalide that will not yield the terminal alkyne as the major product on treatment with $NaNH_2$ at 150 °C. (6 pts.)

3. Place an "X" in the box below any halide that will not produce a useful Grignard reagent on treatment with Mg in ether. (6 pts.)

4. Label each alkene as stable (S) or unstable (U). (6 pts.)

C. Reactions: Total = 36 points, 6 points each

Please provide the starting material, reagents or major product in the answer box. Be sure your drawing indicates **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.

1.

2.

3.

- 1. KMnO₄, warm, conc.
- 2. NaBH₄, EtOH

$$CH_2$$
-C \equiv C-H

- 1. Sia₂BH
- 2. H_2O_2 / OH^-
- -MgBr then H₃O+
- 4. Na₂Cr₂O₇/H₂SO₄/H₂O

$$\begin{matrix} & & \\ & \parallel \\ \text{CH}_3\text{CH}_2\text{C}-\text{Cl} \end{matrix}$$

- 1. CH₃MgBr (XS)
- 2. H₂O 3. HCl, ether, 0°C

D. Mechanisms: (12 points)

Provide a clear mechanism to explain the formation of the product shown. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. Do not show transition states.

$$H_3C$$
 CH_2OH
 CH_3
 $H^-O^-SO_3H$
 H_3C
 CH_3
 CH_3

E. Synthesis: 12 Points

Synthesize the molecule below using any of the following reagents: alkanes or alkenes of **three carbons or less**, cyclohexane, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.