Third Exam

Chemistry 3331

November 16, 2007
ID\#

Please circle class time.

10:00 AM
1:00 PM

4:00 PM

Page \#	Score
1. 16 pts.	
2. 24 pts.	
3. 18 pts.	
4. 18 pts.	
5. 12 pts.	
6. 12 pts .	

TOTAL \qquad

Note: Present your student ID when you return the exam booklet
A. Nomenclature: (16 points)

Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.
1.

\qquad
2.

3.

4.

B. Facts: (24 points total)

1. Place the following compounds in order of increasing acidity. ($1=$ least acidic, $3=$ most acidic) (6 pts.)

\square

\square
2. Place an " X " in the box below any dihalide that will not yield the terminal alkyne as the major product on treatment with NaNH_{2} at $150{ }^{\circ} \mathrm{C}$. (6 pts.)

3. Place an " X " in the box below any halide that will not produce a useful Grignard reagent on treatment with Mg in ether. (6 pts.)

4. Label each alkene as stable (S) or unstable (U). (6 pts.)

\square

\square

\square
C. Reactions: Total $=36$ points, 6 points each

Please provide the starting material, reagents or major product in the answer box. Be sure your drawing indicates stereochemistry if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.
1.

2.

3.

1. $\mathrm{BH}_{3} \mathrm{THF}$
2. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}$
3. PBr_{3}

4,

$\xrightarrow[\text { 2. } \mathrm{NaBH}_{4}, \mathrm{EtOH}]{\text { 1. } \mathrm{KMnO}_{4} \text {, warm, conc. }}$
5.

6.

D. Mechanisms: (12 points)

Provide a clear mechanism to explain the formation of the product shown. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. Do not show transition states.

E. Synthesis: 12 Points

Synthesize the molecule below using any of the following reagents: alkanes or alkenes of three carbons or less, cyclohexane, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

